Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2509, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509075

RESUMO

The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.


Assuntos
Desenvolvimento Embrionário , Genitália , Animais , Camundongos , Comunicação Celular , Redes Reguladoras de Genes , Membro Posterior , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
2.
Mol Biol Evol ; 38(10): 4222-4237, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34164688

RESUMO

The frameshift hypothesis is a widely accepted model of bird wing evolution. This hypothesis postulates a shift in positional values, or molecular-developmental identity, that caused a change in digit phenotype. The hypothesis synthesized developmental and paleontological data on wing digit homology. The "most anterior digit" (MAD) hypothesis presents an alternative view based on changes in transcriptional regulation in the limb. The molecular evidence for both hypotheses is that the MAD expresses Hoxd13 but not Hoxd11 and Hoxd12. This digit I "signature" is thought to characterize all amniotes. Here, we studied Hoxd expression patterns in a phylogenetic sample of 18 amniotes. Instead of a conserved molecular signature in digit I, we find wide variation of Hoxd11, Hoxd12, and Hoxd13 expression in digit I. Patterns of apoptosis, and Sox9 expression, a marker of the phalanx-forming region, suggest that phalanges were lost from wing digit IV because of early arrest of the phalanx-forming region followed by cell death. Finally, we show that multiple amniote lineages lost phalanges with no frameshift. Our findings suggest that the bird wing evolved by targeted loss of phalanges under selection. Consistent with our view, some recent phylogenies based on dinosaur fossils eliminate the need to postulate a frameshift in the first place. We suggest that the phenotype of the Archaeopteryx lithographica wing is also consistent with phalanx loss. More broadly, our results support a gradualist model of evolution based on tinkering with developmental gene expression.


Assuntos
Dinossauros , Asas de Animais , Animais , Aves/genética , Aves/metabolismo , Dinossauros/anatomia & histologia , Extremidades , Filogenia
3.
Dev Biol ; 463(2): 124-134, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417169

RESUMO

Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.


Assuntos
Cartilagem/embriologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Botões de Extremidades/embriologia , Mesoderma/embriologia , Animais , Cartilagem/citologia , Matriz Extracelular/metabolismo , Botões de Extremidades/citologia , Mesoderma/citologia , Proteoglicanas/metabolismo
4.
Wiley Interdiscip Rev Dev Biol ; 9(1): e364, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637866

RESUMO

Systems biology is a large field, offering a number of advantages to a variety of biological disciplines. In limb development, differential-equation based models can provide insightful hypotheses about the gene/protein interactions and tissue differentiation events that form the core of limb development research. Differential equations are like any other communicative tool, with misuse and limitations that can come along with their advantages. Every theory should be critically analyzed to best ascertain whether they reflect the reality in biology as well they claim. Differential equation-based models have consistent features which researchers have drawn upon to aid in more realistic descriptions and hypotheses. Nine features are described that highlight these trade-offs. The advantages range from more detailed descriptions of gene interactions and their consequence and the capacity to model robustness to the incorporation of tissue size and shape. The drawbacks come with the added complication that additional genes and signaling pathways that require additional terms within the mathematical model. They also come in the translation between the mathematical terms of the model, values and matrices, to the real world of genes, proteins, and tissues that constitute limb development. A critical analysis is necessary to ensure that these models effectively expand the understanding of the origins of a diversity of limb anatomy, from evolution to teratology. This article is categorized under: Vertebrate Organogenesis > Musculoskeletal and Vascular Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Establishment of Spatial and Temporal Patterns > Repeating Patterns and Lateral Inhibition.


Assuntos
Extremidades/crescimento & desenvolvimento , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Modelos Teóricos , Transdução de Sinais/fisiologia , Biologia de Sistemas/métodos
5.
Methods Cell Biol ; 143: 41-56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310790

RESUMO

Understanding the morphogenesis and differentiation of tissues and organs from progenitor fields requires methods to visualize this process. Despite an ever-growing recognition that ECM plays an important role in tissue development, studies of ECM movement, and patterns in live tissue are scarce. Here, we describe a method in which a living limb bud is immunolabeled prior to fixation using fluorescent antibodies that recognize two ECM constituents, fibronectin and fibrillin 2. The results show that undifferentiated mesenchyme in quail embryos can be distinguished from prechondrogenic cellular condensations, in situ, via ECM antibodies-indicating the developmental transition from naïve mesenchyme to committed skeletal tissue. We conclude that our live tissue injection method is a general approach that allows visualization of the structural characteristics and the distribution pattern of ECM scaffolds, in situ. With slight modifications, the method will produce robust fluorescence images of ECM scaffolds in any suitable tissue mass and allow multiple kinds of optical analyses including virtual 3D reconstructions.


Assuntos
Anticorpos/imunologia , Matriz Extracelular/imunologia , Botões de Extremidades/diagnóstico por imagem , Imagem Molecular/métodos , Morfogênese , Animais , Anticorpos/química , Embrião não Mamífero , Matriz Extracelular/metabolismo , Fibrilina-2/imunologia , Fibronectinas/imunologia , Fluorescência , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Botões de Extremidades/imunologia , Mesoderma/diagnóstico por imagem , Mesoderma/imunologia , Imagem Molecular/instrumentação , Codorniz
6.
Nature ; 500(7463): 445-8, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23831646

RESUMO

Evolution involves interplay between natural selection and developmental constraints. This is seen, for example, when digits are lost from the limbs during evolution. Extant archosaurs (crocodiles and birds) show several instances of digit loss under different selective regimes, and show limbs with one, two, three, four or the ancestral number of five digits. The 'lost' digits sometimes persist for millions of years as developmental vestiges. Here we examine digit loss in the Nile crocodile and five birds, using markers of three successive stages of digit development. In two independent lineages under different selection, wing digit I and all its markers disappear. In contrast, hindlimb digit V persists in all species sampled, both as cartilage, and as Sox9- expressing precartilage domains, 250 million years after the adult digit disappeared. There is therefore a mismatch between evolution of the embryonic and adult phenotypes. All limbs, regardless of digit number, showed similar expression of sonic hedgehog (Shh). Even in the one-fingered emu wing, expression of posterior genes Hoxd11 and Hoxd12 was conserved, whereas expression of anterior genes Gli3 and Alx4 was not. We suggest that the persistence of digit V in the embryo may reflect constraints, particularly the conserved posterior gene networks associated with the zone of polarizing activity (ZPA). The more rapid and complete disappearance of digit I may reflect its ZPA-independent specification, and hence, weaker developmental constraints. Interacting with these constraints are selection pressures for limb functions such as flying and perching. This model may help to explain the diverse patterns of digit loss in tetrapods. Our study may also help to understand how selection on adults leads to changes in development.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/embriologia , Evolução Biológica , Aves/anatomia & histologia , Aves/embriologia , Extremidades/anatomia & histologia , Seleção Genética , Animais , Dromaiidae/anatomia & histologia , Dromaiidae/embriologia , Extremidades/embriologia , Membro Anterior/anatomia & histologia , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Membro Posterior/anatomia & histologia , Membro Posterior/embriologia , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Asas de Animais/anatomia & histologia , Asas de Animais/embriologia
7.
PLoS One ; 6(1): e16047, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21283644

RESUMO

Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity.


Assuntos
Sítios de Ligação/genética , Genoma Humano/genética , Domínios PDZ , Mapeamento de Interação de Proteínas/métodos , Linhagem Celular , Células/metabolismo , Biologia Computacional/métodos , Reações Cruzadas , Estudo de Associação Genômica Ampla , Humanos , Ligação Proteica/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...